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Rosenbluth chain cluster growth in the study of micelle self-assembly

T. Dalby and C. M. Care
Materials Research Institute, Sheffield Hallam University, Pond Street, Sheffield S1 1WB, United Kingdom

~Received 5 October 1998!

A Rosenbluth algorithm@J. Chem. Phys.23, 356~1955!# for enumerating clusters of chains is presented. The
method is used to undertake a direct enumeration of the cluster partition function for small clusters in a
three-dimensional lattice model of a binary mixture of amphiphile and solvent. In this model, the amphiphiles
are represented as connected chains on a lattice, with vacant sites representing the solvent. The results from the
Rosenbluth method are compared with those obtained by Metropolis Monte Carlo simulations which allow free
self-assembly of clusters. The agreement between the two methods allows an unambiguous identification of the
packing entropy associated with micelle self-assembly. Results are presented for unbranched chains having two
head and four tail segments (H2T4) and also four head and four tail segments (H4T4). Although the cluster
enumeration method described in this paper has been developed for micellar systems, it will have applications
in a variety of areas including nucleation and percolation.@S1063-651X~99!06905-6#

PACS number~s!: 02.70.2c, 61.20.Ja, 82.60.Lf, 83.70.Hq
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I. INTRODUCTION

The problem of establishing exact results in the statist
mechanics of micellar self-assembly is particularly diffic
because of the complexity of the molecules and the mic
scopic inhomogeneity of the micellar phase. Many work
have studied coarse grained models which allow the
self-assembly of amphiphiles, and particular attention
been given to lattice models@1–7#. Such models have bee
shown, by computer simulation, to exhibit many of the fe
tures of real amphiphile self-assembly such as a critical
celle concentration and a cluster size distribution showing
equilibrium between monomers and micellar like cluste
The work in this paper considers amphiphile clusters form
on a three-dimensional lattice, and results are obtained
amphiphiles which have four tail segments and either t
head segments (H2T4) or four head segments (H4T4). The
model is described in more detail in Sec. II.

It is possible to extract, fromNVT Monte Carlo simula-
tions, quantities such as the excess chemical potential
monomer and the excess enthalpy and entropy per mono
@8# by assuming that Hill’s treatment@9# of imperfect gases
in terms of physical clusters can be applied, in the limit
low concentrations, to micelle self-assembly. The work
this paper is motivated by a requirement to test the appl
bility of Hill’s analysis by establishing a method to enume
ate the cluster partition function of amphiphile clusters
rectly. Although the algorithm for cluster enumeratio
described here has been developed for one particular a
cation, the method is applicable to a range of physical pr
lems in the theory of nucleation, percolation, and branc
polymers.

The cluster enumeration method is based on an exten
of a scheme first proposed by Rosenbluth and Rosenb
@10# for enumerating self-avoiding polymer chains. O
scheme is itself an extension of a ‘‘degenerate’’ Rosenb
scheme developed by Care@11# for lattice animal enumera
tion. Results are obtained for the cluster partition funct
together with the enthalpic and entropic contributions to
process of micellization. The results are compared with th
PRE 591063-651X/99/59~5!/6152~9!/$15.00
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obtained using Metropolis Monte Carlo simulations in t
NVT ensemble.

As explained in Sec. III, the central problem in develo
ing a Rosenbluth algorithm for cluster counting is the pro
lem of determining adegeneracyassociated with the cluste
growth. Thedegeneracyarises from the number of differen
ways in which the algorithm can construct essentially
same cluster, a problem which does not arise in linear po
mer growth. In the method presented here the degenera
become simple to calculate, and data can be collected fo
cluster sizes as the clusters are grown. However, the pen
for the simplicity of degeneracy calculation is the need
control the way in which a cluster can grow. An alternati
method of correcting for the degeneracy was proposed
Pratt@12#. In this latter scheme the correcting weight is mo
complicated to calculate, and must be recalculated at e
stage of the cluster growth; however, the Pratt scheme d
not require any restriction on the growth of the cluster.

In Sec. III, the Rosenbluth scheme for the growth of
single polymer chain is described. The Care method for e
merating lattice animals is summarized in Sec. IV A, and
extension to enumerating clusters of chains is given in S
IV B. The application of the method to calculating the e
tropic and enthalpic contributions to micellization and t
comparisons with Metropolis simulations are described
Sec. V. Conclusions are presented in Sec. VI.

II. MODEL

The development of the Rosenbluth scheme describe
this paper is motivated by an ongoing study of micelle se
assembly in a lattice model of an amphiphile and solv
mixture @13#. The amphiphiles are represented on a sim
cubic lattice as unbranched, flexible, chains ofs segments
with h segments representing the hydrophilic head and
remaining (s-h) segments representing the hydrophobic ta
Vacant sites on the lattice represent the solvent. Each
ment of a chain may be considered to represent a numbe
repeat units of a real amphiphilic chain. If only neare
neighbor interactions are allowed, the potential energy of
6152 ©1999 The American Physical Society
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system may be written, without approximation, in the for

U

kT
5b~nTS1gnHS1hnHH1en'! ~1!

wherenTS, nHS, nHH , andn' are the total number of tail
solvent interactions, head-solvent interactions, head-hea
teractions, and right-angle chain bends.b is the ratio of tail-
solvent energy tokT, andg, h, ande, respectively, are the
head-solvent, head-head, and right-angle bond ener
scaled by the tail-solvent interaction energy. In order for
model to represent amphiphilic behavior, the interaction
ergies are chosen withb.0 andg,0. The parametere may
be set greater than zero in order to introduce the effec
chain stiffness. In the current paper, the explicit head-h
interactions are set to zero (h50); this is not a serious ap
proximation, since in the micellar region of the phase d
gram there are relatively few nearest neighbor head-head
teractions. It should also be noted that there is an effec
head-head repulsion which arises from the requirement
the head segments be nearly fully solvated for the param
values used.

The model is equivalent to a spin-1 Ising model, and
lows the hydrophilic-lipophilic balance~HLB! to be adjusted
independently of the temperature parameterb21, through
the choice of both the chain geometry and the head-sol
interaction parameterg. This is in contrast to the spin-1

2 form
of a model used in Ref.@2# and by other workers~e.g., Ref.
@14#! in which there is only one relevant energy parame
Hence, in this latter model, once the temperature has b
fixed, the HLB can only be adjusted by changing the relat
sizes of the head and tail sections of the molecule. The s
1
2 form of the Larson model can be mapped onto the mo
used here and it is found, ignoring the chain stiffness te
and an additive constant, to be of the form

U

kT
5b~nTS2nHS22nHH!. ~2!

Thus, in this representation, the spin-1
2 model includes an

effective head-head attraction although it still forms micel
and other amphiphilic phases.

III. ROSENBLUTH SINGLE CHAIN GROWTH

The original Rosenbluth scheme@10# was developed to
calculate the statistical properties of self-avoiding polym
chains using a Monte Carlo growth process. An ensembl
M chains is grown, and during the growth of each chain
weight is calculated which can be used to construct weigh
averages whose expectation values give, for example,
number of independent chains,cN , of lengthN or the root
mean square chain extension.

Each chain in the ensemble is grown by placing an ini
segment on a two- or three-dimensional simple-cubic latt
Successive segments are then added to the end of the c
thus growing the chain in a linear sequence. If we consid
chain which already hasi segments, the (i 11)th segment is
added to the end of the chain using the following algorith

~1! Assign a normalized probabilitypi
v for the addition of

the (i 11)th segment to one of thev sites adjacent to the en
in-
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segment of the chain; assign a probability of zero to any
that is occupied, in order to prevent the chain from growi
into itself.

~2! Select one of these sites,v i , by simple Monte Carlo
sampling, with probabilitypi

v i.
~3! Repeat steps~1! and ~2! until the chain has grown to

the required lengthN.
~4! Associate a weightWa with the construction of each

member,a, of the ensemble. Rosenbluth and Rosenbl
chose

Wa5
1

Pa
5

1

)
i 52

N

pi
v i

. ~3!

If it is impossible to complete the growth of the chain, b
cause all directions are blocked, the weight for the chain
set to zero. The chain must be included in the counting
sociated with the weighted average defined below.

Provided thatSvpi
v51, there is no necessity for all of th

pi
v is to be equal, but this is usually the choice made

construction of athermal chains. It is important that t
choice ofpi

v allows the growth of all possible chains~i.e., is
ergodic!; the choice ofpi

v affects the speed with which th
method converges to the required averages. A weighted
erage over the ensemble may be defined for any properO
of the chains as follows:

^O&W5
1

NE
(
a51

NE

WaOa , ~4!

whereNE is number of chains grown in the ensemble. IfWa
is given by Eq.~3!, the expectation value of weighted ave
ages is given by

E@^O&W#5 (
n51

cN

On , ~5!

where the summation is over all possible distinguisha
chain configurations,n, and hence, for example,

E@^1&W#5cN , ~6!

E@^Rn
2&W#5 (

n51

cN

RNn
2 5cNRN

2 . ~7!

It is possible to calculate averages in the canonical ensem
if the pi

v’s are chosen to be

pi
v5

exp2b~Ui
v

2Ui 21!

(
v

exp2b~Ui
v

2Ui 21!

, ~8!

andWa is set to

Wa5)
i 51

N S (
v

exp2b~Ui
v

2Ui 21!D , ~9!
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6154 PRE 59T. DALBY AND C. M. CARE
whereUi 21 is the energy of the chain of lengthi 21, andUi
v

is the energy of the chain if thei th segment is placed in
positionv. Using this choice ofpi

v andWa , we can obtain
an estimate of the canonical partition function using

E@^1&W#5 (
n51

cN

exp2bUn, ~10!

and also obtain canonical averages of other quantities.

IV. ROSENBLUTH CLUSTER GROWTH

In a previous paper@11# one of the authors developed
Rosenbluth technique for the enumeration of the numbe
distinct lattice animals ofN sites~clusters of single sites! on
any given lattice. The method constructs each cluster by
peatedly adding sites to the surface of a connected clu
and calculating an associated weight as in the stand
Rosenbluth scheme. The principal problem to be overcom
that the growth process introduces a ‘‘degeneracy’’ wh
arises from the many different ways in which the same cl
ter can be constructed. Thus if each addition to the cluste
labeled sequentially as the cluster grows, there are many
ferent labelings which may be given to the same final clus
shape. Unfortunately, the calculation of the degenerac
nontrivial; its value depends upon the details of the grow
algorithm and the connectivity of any given cluster.

The method developed for correcting for this degener
@11# involves restricting the cluster growth sequence in su
a way that each possible cluster labeling can be grown
only one way. This yields a degeneracy of exactlyN!. In this
scheme, the clusters are constructed using a set of lab
‘‘bricks,’’ and the method is based on the observation t
for any givenconnected cluster of labeled objects, aunique
growth sequence can be devised in which, at each stag
the growth of this given cluster, the next object to be add
to the surface of the growing cluster is that object which is~i!
connected to the cluster, and~ii ! carries the lowest label. An
arbitrary cluster of seven labeled bricks is shown in Fig. 1~a!,
and the associated growth sequence is shown in Figs. 1~b1!–
1~b7!. In Ref. @11# the following algorithm is shown to en
force the above growth sequence during the growth of a
beled cluster.

A. Single site cluster algorithm

An ensemble of clusters of sizeN is constructed, and fo
each cluster a weight is calculated which can subseque
be used to calculate weighted averages of cluster proper
Each cluster is constructed in a connected growth sequ
from a set of labeled ‘‘bricks’’; the label on each brick
denoted byk, an integer in the range 1, . . . ,N inclusive. As
bricks are added to the cluster we maintain a record of the
of ‘‘surface’’ sites ~v in number! which are adjacent to the
cluster, i.e., vacant, and connected to the cluster. For e
such surface site we record a quantitykm which denotes the
minimum k value allowed at that site. This is the metho
which is used to control the growth of the cluster to ens
the required degeneracy. The value ofkm for any given sur-
face site changes, in a manner described in detail below
the cluster is grown. Each cluster growth is begun by plac
of
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the brick withk51 on the lattice and repeating the follow
ing steps until the cluster is fully grown.

~1! Select one of the surface sites as the site which is n
to be occupied and delete the site from the list of availa
surface sites.

~2! Select one of the remaining bricks with ak value
greater than or equal to thekm for that surface site.

~3! Add the brick to the cluster and remove it from the s
of available bricks.

~4! Adjust the record of surface sites and their associa
km values.

~5! Accumulate the data necessary to calculate the we
to be associated with the cluster.

We now comment on each of these steps in more det
~1! The surface site to be used for the attachment o

brick is chosen from the set ofv available surface sites b
simple Monte Carlo sampling with a normalized probabil
pi

v . The valuepi
v i associated with the selected surface site

recorded for the subsequent evaluation of the weight,Wa , to
be associated with clustera.

~2! A brick is selected from the subset of remaining bric
which havek>km , wherekm is the minimum allowedk
value for that surface site. The brick is chosen with a n
malized probabilitypi

k . The valuepi
k i for the chosen brick is

recorded to calculateWa . In the following we assume tha
the selected brick hask5ks . It was found in Ref.@11# to be
preferable if thepi

k’s are chosen such thatpi
k}lk, where

1>l>0, and the parameterl is chosen empirically, for
given N, to minimize the skewness of the probability distr
bution of the weights,P(W). l was typically set to be 0.9.

~3! The brick is added to the record of the current clus
and removed from the list of available bricks.

~4! For eachold surface site in thecurrent table of surface
sites, set

FIG. 1. Example of growth sequence for a cluster of seven
beled bricks.~a! Final cluster with arbitrary labeling.~b1!–~b7!
Unique growth sequence described in Sec. IV to achieve a g
labeled cluster.
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kmunew5max~kmuold ,ks11!. ~11!

If none of the remaining bricks has ak value greater than, o
equal to,kmunew, the site is removed from the list of surfac
sites since no bricks could subsequently be placed at
site.Newsurface sits associated with the brick placed at s
~2! are identified; in order to qualify as a new surface s
the site must not appear in the current table of surface s
The new surface sites are added to the list of adjacent s
and, for each new surface sites,km is set to the lowestk
value of the remaining bricks since there is no restriction
the bricks which may be placed onnew surface sites.The
adjustment of the surface sites and their associatedkm is the
key process in enforcing the unique cluster growth seque
described at the beginning of Sec. IV.

~5! A weight Wa
M51/(dMP i 52

M pi
v ipi

k i) is associated with
each cluster of size 1<M<N where the degeneracydM
5M (N21)!/(N2M )!. If it is impossible to complete the
growth of the cluster, because there are no available sur
sites, the weight for the cluster is set to zero. Thus data
be collected for all cluster sizes up to sizeN simultaneously.

Once an ensemble of clusters has been genera
weighted averages can be calculated. More details of
method were given in Ref.@11#, where it was shown that th
method successfully enumerates lattice animals up to siz
on both two- and three-dimensional simple cubic lattic
Results are presented in Table I.

B. Chain cluster growth

In this section we describe how the single site clus
algorithm described in Sec. IV A may be extended to gr
Boltzmann weighted clusters of amphiphilicchains. An en-
semble of clusters of labeled chains is grown in an analog
manner to the growth of a cluster of single sites describe
Sec. IV A with adjacent ‘‘surface’’ sites labeled withkm
values. The weights accumulated during the cluster gro
may be used for the direct enumeration of the partition fu
tion as shown in Sec. III, as well as other Boltzma
weighted cluster averages.

Each chain in the cluster is itself grown using a Ros
bluth scheme modified to allow the chain to be grown fro
any position along its length and not in a linear sequen
This change is necessary in order to allow all possible clu
configurations to be observed. It is also necessary to in
duce an additional ‘‘degeneracy’’ associated with the nu
ber of contact points the chain makes with the cluster.
now describe in more detail the addition of a chain to
established cluster of chains.

~1! A Monte Carlo choice is made to determine if the fir
segment of the new chain to be placed should be a head
tail. This choice is made with a probabilityp1

seg512f for a
tail and p1

seg5f for a head. In order to correct for the bia
introduced by this choice, the weight associated with
cluster is multiplied by 1/p1

seg. It is necessary to introduc
the quantity f because the use of unbiased Boltzma
weights results in the first segment nearly always being
lected as a head segment, and this leads to poor samplin
the partition function, even for monomers. The value off is
adjusted empirically to minimize the variance in the calc
lated averages and maximize the rate of convergence o
at
p
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averages. The value of this parameter depends greatly on
ratio of head to tail segments present in an amphiph
chain; for a chain of length 6 (H2T4), it was set at 0.25.

~2! Once the type of segment has been selected, a Bo
mann weighted Monte Carlo choice is made of the surf
site at which the segment is to be placed. Thus the proba
ity of the segment being placed at a given surface site,v, is
made proportional toB1

v5exp(2bDUs
v) whereDUs

v is the
change in energy associated with placing the segment at
site. The weight for the cluster is multiplied byZ15SvB1

v in
order to achieve Boltzmann weighted averages, as expla
in Sec. III.

~3! The growth of the chain is continued by adding se
ments at either end of the chain. For each segment a choi
first made of the type of segment to be placed and the
Boltzmann weighted decision is made as to the position
the segment. Once all the segments from a type~head or tail!
have been placed, the probabilitypm

seg for the addition of
segmentm must be modified to either 1 or 0 to ensure th
the final chain has the correct structure. Note that only t
may be grown onto the tail segment and heads onto the h
segment.

TABLE I. Estimates of the number of lattice animals of sizeN
on a three-dimensional simple-cubic lattice. Comparison of~i! the
chain cluster algorithm using 13109 sample clusters,~ii ! the origi-
nal single site algorithm@11# using 1.83107 sample clusters,~iii !
exact values, and~iv! Lam’s estimate@17#.

N This paper Care estimate Exact value Lam estima

2 3.0003100 3.0003100 3.0003100

3 1.5003101 1.5003101 1.5003101

4 8.6003101 8.5973101 8.6003101 8.5943101

5 5.3403102 5.3393102 5.3403102 5.3213102

6 3.4813103 3.4853103 3.4813103 3.4753103

7 2.3503104 2.3523104 2.3503104 2.3533104

8 1.6293105 1.6293105 1.6293105 1.6313105

9 1.1533106 1.1543106 1.1533106 1.1553106

10 8.2953106 8.2963106 8.2953106 8.2913106

11 6.0503107 6.0503107 6.0493107 6.0423106

12 4.4623108 4.4613108 4.4623108 4.4423106

13 3.3233109 3.3213109 3.3233109 3.2913106

14 2.49531010 2.49331010 2.46131010

15 1.88631011 1.88431011 1.86231011

16 1.43531012 1.43431012 1.41631012

17 1.09831013 1.09531013 1.08231013

18 8.44031013 8.41231013 8.32931013

19 6.51631014 6.50731014 6.44631014

20 5.04931015 5.03631015 5.00231015

21 3.92731016 3.91731016 3.89731016

22 3.06431017 3.05931017 3.05231017

23 2.39731018 2.33831018 2.39131018

24 1.88331019 1.87231019 1.87731019

25 1.48331020 1.46131020 1.48031020

26 1.16531021 1.16531021 1.16831021

27 9.15631021 9.32131021 9.20931021

28 7.28131022 7.25131022 7.29031022

29 5.80431023 5.55531023 5.78631023

30 4.60831024 4.35931024 4.61031024
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~4! At each stage in the growth, the weight is multiplie
by the appropriate factors to generate the Rosenbluth we
If at any point during the addition of theM th chain the
growth becomes blocked, the weights for the clusters fromM
to N inclusive are set to zero. Note that it is essential t
these zero weight terms are included in the calculation of
weighted averages. After the addition of thei th chain, the
following factor is calculated:

wi5 )
m51

s
Zm

pm
seg. ~12!

~5! As the chain is growing, a note is kept of themaxi-
mumkm value for any surface site that becomes occupied
the chain growth. When the chain is complete, ak label is
selected for it from the set of remainingk labels which are
greater or equal to this value ofkm with probability pi

k}lk

as for the single sites. Once again the parameterl is selected
empirically to minimize the variance of the final weighte
averages; for a chain of length 6(H2T4), it was set at 0.95.

~6! After the label for the added chain has been selec
all the old and new adjacent sites have theirkm values set in
the same way as in the single site cluster algorithm.

~7! A degeneracydc is associated with the growth of th
individual chain. This degeneracy arises because the
chain could have started growth from any of its cont
points with the original cluster, and is given by

dc5(
$c%

S s21
c21D , ~13!

where the summation$c% is over the set of segments whic
make contact with the original cluster onto which it has ju
been grown; future contact points of the chain are not
cluded in this degeneracy. In Eq.~13! the numerical value of
c is determined by indexing the segments of the chain
quentially fromc51 to c5s. If the chain makes contact a
every segmentdc52s21, as would be expected.

~8! The weight associated with each cluster of s
1<M<N is

Wa
M5

1

dM
)
i 51

M
wi

dc
i pi

k i
, ~14!

where the degeneracydM5„M (N21)!/(N2M )…!. Hence
data are collected for all cluster sizes up to sizeN simulta-
neously.

It should be noted that the parametersf and l do not
affect the expectation value of the weighted averages, s
the bias they introduce is canceled through the Rosenb
weights. Thus the weighted averages yield essentially e
values for the measured quantities, since the Rosenb
weights are chosen to correct for any bias introduced in
sampling process. A schematic outline of the structure of
code used to implement the algorithm is given in the App
dix. The following validation tests were undertaken of t
final code.

~1! Lattice animals~i.e., clusters of chains of length 1! up
to size 30 were grown, and the results compared with ex
results and also estimates obtained in Refs.@11# and @17#.
ht.

t
y

y

d,

al
t

t
-

e-

ce
th
ct
th
e
e
-

ct

The results are given in Table I, and it can be seen that
new algorithm is in good agreement with the previous
sults.

~2! A direct enumeration method was used to count
number of independent athermal arrangements of a si
chain. The results from the new chain cluster algorithm
compared with these results for chains up to chains of len
6 in Table II.

~3! An independent code was written to grow atherm
clusters of two chains using a simple extension of the st
dard Rosenbluth scheme@10#. This scheme grew nonpola
chains from any point along the chain. The new chain clus
scheme replicates these results by setting the number of
to zero and also settingb very low ~e.g.,b5131029). The
results for both simulations are compared in Table III.

V. RESULTS

A. Rosenbluth method

The Rosenbluth scheme described above has been
directly to evaluate the cluster partition function

QN
c ~V,T!5(̂

i &
exp~2Ui

N/kT!, ~15!

where the summation̂i& is over all distinguishable con
nectedN clusters, assuming that the amphiphile chains
indistinguishable. The superscriptc indicates that the sum
mation does not include any translation of the cluster. It
also possible to evaluate the canonical averagest̄ N, h̄N, and
r̄ N of the number of tail-solvent interactions, head-solve
interactions, and right-angle bonds for clusters of sizeN de-
fined, for example, by relations of the form

t̄ N5^tN&W5(̂
i &

pi
cNt i

N , ~16!

TABLE II. Comparison of results from the new Rosenbluth a
gorithm using 13106 sample chains and values obtained by dire
enumeration of the possible athermal configurations of a sin
chain.

Chain length Direct evaluation Rosenbluth result

2 6 6.00
3 30 30.00
4 150 150.00
5 726 726.07
6 3534 3533.36

TABLE III. Number of distinguishable clusters of two chain
Comparison of results from new Rosenbluth scheme and an i
pendent code both using 13106 sample clusters.

Chain length New Rosenbluth Check Rosenbluth

3 1.1053104 1.1053104

4 3.8823105 3.8803105

5 1.1803107 1.1793107

6 3.4693108 3.4643108
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FIG. 2. Probability distributionP„ln(W)… of
the weightsW for different values of the param
etersl andf.
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where^ &W is the Rosenbluth Boltzmann weighted avera
and

pi
cN5

exp~2Ui
N/kT!

QN
c ~17!

is the canonical ensemble probability of a particularN clus-
ter. Note that the vacant sites are solvent sites, and henct̄ N

andh̄N are determined by the surface sites of the cluster.
average internal energy perN cluster,ŪN, is defined by

1

kT
ŪN5b~ t̄ N1gh̄N1e r̄ N!. ~18!

We may use the relation

2 ln~QN
c !5

ŪN

kT
2

SN

k
5

ŪN

kT
1(̂

i &
pi

cN ln pi
cN ~19!

to calculate the excess packing entropy per monomer defi
by

1

k S SN

N
2S1D52

1

N (
$ i %

pi
cN ln~pi

cN!1(̂
i &

pi
c1 ln~pi

c1!.

~20!

The Rosenbluth scheme was used to evaluate the clu
excess entropy and excess enthalpy, (1/kT)(ŪN/N2Ū1), for
clusters up to size 6 forH4T4 and up to size 8 forH2T4 by
growing 109 clusters and calculating appropriate weight
averages. The values of the parametersf andl were estab-
lished empirically to minimize the variance ofP(W), the
probability distribution of the cluster weights. The effect
varying these parameters is illustrated in Fig. 2, where it
be seen that this distribution is approximately log norma

B. Comparison with Metropolis simulations

Extensive Metropolis Monte Carlo simulations were a
undertaken in theNVT ensemble~cf. Refs.@15,8# for more
details!. In the absence of cluster-cluster interactions, it
,

e

ed

ter

n

s

possible to use Hill’s analysis@9# of physical clusters to
show @8# that the excess chemical potential, at infinite dil
tion, of a cluster of sizeN is given approximately by

1

kT
~mN

0 2m1
0!5

1

kT
S ŪN

N
2Ū1D 2

1

k S SN

N
2S1D

1S 12
1

ND ln~s!. ~21!

The excess chemical potential at infinite dilutio
(1/kT)(mN

0 2m1
0), is measured from theNVT simulations by

appropriate inversion of the cluster size distribution. Resu
can also be obtained for the averagest̄ N, h̄N, andr̄ N. Hence
the NVT Metropolis simulations yield estimates of the e
cess enthalpy and entropy as a function of cluster size.

The monomer partition functionQ1
c can be calculated ex

actly and was found to agree with the Rosenbluth estim
within 0.003% forH2T4 . The quantitiest̄ 1, h̄1, andr̄ 1 were
also calculated fromQ1

c and found to agree with the Rosen
bluth values to within 1025 for H2T4 , and with the Metropo-
lis data to within 0.6%.

Data from the Rosenbluth scheme and the Metrop
simulations are shown in Figs. 3 and 4. It can be seen tha
two methods are in good agreement up to clusters of siz
for H2T4 and size 6 forH4T4 . Above these cluster sizes, th
Rosenbluth scheme becomes unusable because the sam
distribution of the weights becomes highly skew and the
erages obtained have very high variance. This problem
recognized by Batoulis and Kramers@16# in their study of
polymer chain growth using the Rosenbluth method. Ho
ever, these authors concluded that acceptable samplin
polymer chains up to lengthN5240 was possible. Although
a linear chain is not directly comparable with a cluster
individual chains, it still seems possible that improveme
to the algorithm described here may yield accurate inform
tion on significantly larger clusters than have been poss
here. It seems likely that the problem arises here because
algorithm is not efficiently sampling the important cluste
for largeN. This is probably due to the amphiphile cluste
being constructed sequentially, which does not efficien
sample the lowest energy structures for largeN. However, it
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may be possible to improve the cluster growth algorithm
more efficiently sample these low energy structures.

The logarithm of the cluster partition function is estimat
to have an error of less than 1% for the data presented h
This error estimate is obtained from appropriate block av
aging of the results. However the sampling distributions
highly skew, and it is therefore possible that these err
underestimate the true errors. The excess enthalpy is
sensitive to the nature of the clusters which are sampled,
the measured uncertainties are correspondingly much hig
These larger uncertainties are therefore observed in the
mates of the excess entropy which is calculated from
~19!.

The Rosenbluth results provide an independent chec
the validity of using the partition function for independe
clusters in the analysis of micellar systems; this assump
is implicit in the derivation of Eq.~21!. The agreement be
tween the Metropolis and Rosenbluth data for smallN sup-
ports the use of Eq.~21! to analyze the Metropolis data ove
the wider range ofN. The results from the Metropolis calcu

FIG. 3. Comparison of excess entropy per molecule and ex
enthalpy per molecule for theH2T4 amphiphile.~3!: Metropolis
Monte Carlo;~1!: Rosenbluth cluster growth.

FIG. 4. Comparison of excess entropy per molecule and ex
enthalpy per molecule for theH4T4 amphiphile.~3!: Metropolis
Monte Carlo;~1!: Rosenbluth cluster growth.
o
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lation are shown in Fig. 5 for larger cluster sizes. It can
seen that the difference in behavior of the two species ca
attributed to the excess entropy rather than the excess
thalpy. It can be seen that the excess entropy per mono
initially grows for the smallest cluster sizes and then mon
tonically decreases as the clusters grow. The initial grow
arises because of the rapid increase in the number of di
guishable clusters as the number of monomers in a clu
increases. The subsequent reduction in entropy per mo
mer, as the clusters grow, is related to the loss of freed
associated with packing the monomers in such a way a
maintain the head-solvent interactions while minimizing t
tail-solvent interactions~hydrophobic effect!.

VI. CONCLUSIONS

It has been shown that the modified Rosenbluth sche
can successfully calculate the partition function for clust
up to size 8 forH2T4 and up to size 6 forH4T4 . The results
obtained are in good agreement with data extracted fr
Metropolis NVT simulations, and allow an unambiguou
identification of the entropy of packing within a micelle
This validation of the analysis of the Metropolis data su
ports the use of the Metropolis method to extract the exc
entropy and enthalpy to higher cluster sizes than is poss
with the Rosenbluth scheme. Analysis of the data obtaine
this way yields an insight into the relative importance of t
enthalpy and packing entropy in micellization, and these
sults will form the basis of a future publication.

The Rosenbluth method samples from distributions wh
become highly skew as the cluster size increases, and
limits the applicability of the current method to relative
small clusters. However, it may be possible to improve
method of cluster growth, within the spirit of the curre
algorithm, and obtain data for larger cluster sizes. T
method described in this paper is also only applicable
enumerating the partition function associated with clust
on a lattice; the method will not be directly applicable
off-lattice systems, since these require the evaluation of
integral rather than a summation. However, it may be p

ss

ss

FIG. 5. Metropolis Monte Carlo data. Excess chemical poten

per molecule, (mn
02m1

0)/kT, excess enthalpy per molecule, (Ūn/n

2Ū1)/kT, and excess entropy per molecule, (Sn/n2S1)/k.
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sible to adapt the method for use in off lattic
configurational-bias Monte Carlo, in a manner analogous
the method described in Ref.@18#.

APPENDIX: CLUSTER SURFACE ALGORITHM

The partition function of a cluster of chains grows rapid
with the cluster size because of the large number of poss
configuration; approximately 1.531050 for a cluster of size
10(H2T4). In order to obtain a reasonable estimate of
partition function, it is therefore necessary to sample a s
ficiently large and representative set of these clusters. If
sampling is to be carried out in an acceptable time, it
necessary for the code to be very efficient. The slowest
of the cluster growth code is that which keeps track of
cluster surface, and it is therefore this part which needs
most optimizing. The following algorithm is the result of th
optimization, and describes the addition of single chain t
pre-existing cluster.

~1! Grow an amphiphilic chain on a three dimension
lattice as described in Sec. IV B. As the chain is grown, st
all of the six nearest neighbors of each placed chain segm
in a temporary ‘‘surface’’ list~templist! as an integer value
index5xposl

21yposl 1zpos, wherexpos, ypos, andzpos corre-
spond to the position on the three-dimensional lattice of
surface site, andl is the lattice box length.

~2! Once a chain has been fully grown,templistis merged
with a permanent surface list,permlist, from which the start
of the next chain will be selected. As the lists are merg
undertake the following.

~a! Check each surface site in thetemplistto determine if
it is occupied. This is done by examining the correspond
lattice site in thelattice, a list which records occupied site
on the lattice, using the storedindexnumber. The site is no
added to thepermlist if it is occupied.

~b! Check each surface site in thetemplistto determine if
it is already present on thepermlist. This is done using the
list kmlist, which gives thekm value of the surface site. If the
lattice site has not been examined before~i.e., it is not on the
permlist!, then it will have akm value of zero. If the surface
site has been visited before then it is not added to theperm-
list; however, the environment of the surface site h
changed and therefore this has to be updated; see~2c! and
~2d!.

~c! Calculate the Boltzmann weights associated with pl
ing either a head or tail at a surface site to be added to
permlist. These values are stored in a list, theboltzlist, which
ys
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is linked to thepermlistusing a list called thesortlist.
~d! Calculate the change in head-solvent and tail-solv

interactions associated with placing either a head or tail
surface site to be added to thepermlist. These values are
used in calculating the enthalpy and are stored in theintlist,
which is linked to thepermlistby thesortlist.

~3! Remove all surface sites in thepermlist that are now
occupied due to the chain just grown.

~4! Update thekm values of all the surface sites in th
permlist.

~a! Surface sites are given akm value, as explained in Sec
IV B.

~b! Surface sites that are no longer available because
have akm value greater than that of the largest remainingk
label are given Boltzmann weights of zero~so that they are
never selected or grown into!.

~5! Update weights and start growth of next chain.
To summarize, we use a total of three lattice lists and f

sequential lists for this algorithm, and they are the followin
~i! lattice—This is a lattice which records if a site is oc

cupied by using a number greater than 0 which also identi
the amphiphile present at that site.

~ii ! sortlist—This lattice gives the appropriate position
the Boltzmann and interaction lists for a specific surface s
expressed as an index number~index!.

~iii ! kmlist—This lattice stores thekm values of each sur-
face site. For speed, old sites that are now occupied by c
segments are not reset to zero; only new or changed site
modified.

~iii ! templist—This stores all the surface sites of the ne
chain grown onto the cluster.

~iv! permlist—This stores all the surface sites of the clu
ter, expressed as an index number, available to place the
segment of the next chain.

~v! boltzlist—This stores the Boltzmann weight associat
with placing either a head or a tail at a certain lattice s
found using thesortlist. It is used to calculate the weight
and also the probability of placing a segment at that positi

~vi! intlist—This stores the change in head-solvent a
tail-solvent interactions associated with placing a head o
tail at a certain lattice site. This is used to calculate the
thalpy.

It should be noted that as a chain is grown, surface s
added to thetemplistmay be repeated or even grown int
We could precheck every surface site added to the list,
this is computationally expensive, and the checking is o
done as thetemplistis added to thepermlist.
m.
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